Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Jin Mizuguchi,* Kazuyuki Hino, Kazuyuki Sato, Hiroo Takahashi and Shigeru Suzuki

Department of Applied Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan

Correspondence e-mail: mizu-j@ynu.ac.jp

## Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
$R$ factor $=0.062$
$w R$ factor $=0.045$
Data-to-parameter ratio $=11.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## $N, N^{\prime}$-Di-2-pyridylperylene-3,4:9,10bis(dicarboximide)

The title compound, $\mathrm{C}_{34} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$, is a perylene-imide pigment utilized for $\mathrm{H}_{2}$ gas sensors. There are two independent halfmolecules in the asymmetric unit. The symmetry of both molecules is $C_{i}$. The angles between the each of the pyridyl rings and the perylene-imide skeleton are 77.7 (1) and 72.8 (1) in the two molecules. The independent molecules are stacked alternately along the $b$ axis.

## Comment

Perylene compounds are industrially important pigments, covering a variety of shades from red via maroon to black (Herbst \& Hunger, 1993). The title compound, (I), is an orthopyridyl derivative, abbreviated to OPP.

(I)

We have carried out a series of investigations on $\mathrm{H}_{2}$ gas sensors utilizing a high proton affinity of organic pigments that have pyridyl rings connected directly to the choromophore (Takahashi \& Mizuguchi, 2005). The N atom of the pyridyl ring works as a strong proton acceptor and plays a decisive role for signal detection. OPP exhibits a resistivity change of about three orders of magnitude even for $0.05 \% \mathrm{H}_{2}$. Other than the present ortho derivative, there are also meta and para derivatives and their sensitivity is slightly different, depending the site of the N atom. In this connection, structure analyses of these derivatives have been carried out. The structures of the meta and para derivatives are reported in the preceding and following papers, respectively (Mizuguchi et al., 2005; Hino et al., 2005). This paper reports the structure of the ortho derivative.

The two independent molecules, $A$ and $B$, of OPP (Fig. 1) are characterized by the same molecular $C_{i}$ symmetry. The molecular conformations of these molecules are quite similar, but the twist angle of the pyridyl rings is different. The angles between each of the pyridyl rings and the perylene-imide

Received 14 January 2005
Accepted 19 January 2005 Online 29 January 2005
A

C17

Figure 1
A view of the molecular conformations of the two independent molecules of (I), showing $50 \%$ displacement ellipsoids for the non- H atoms. Unlabelled atoms in A are related to labelled atoms by $-x, 1-y, 1-z$; unlabelled atoms in B are related to labelled atoms by $2-x, 1-y,-z$.
skeleton are $77.7(1)^{\circ}$ in molecule $A$ and $72.8(1)^{\circ}$ in molecule $B$. The perylene-imide skeleton is planar (r.m.s. deviations $=$ 0.048 and $0.032 \AA$ for the two molecules in the asymmetric unit). Molecules $A$ and $B$ are stacked alternately along the $b$ axis, as shown in Fig. 2.

## Experimental

OPP was synthesized by reaction of perylenetetracarboxylic dianhydride with 1,2-di-2-pyridyldiamine in dimethylnaphthalene at 490 K for 3 h according to the method of Herbst \& Hunger (1993). The product was then purified three times by sublimation at 760 K , using a two-zone furnace (Mizuguchi, 1981). Single crystals of OPP were grown from the vapor phase in a closed system based on a twozone furnace. After 48 h , a number of single crystals were obtained in the form of needles.

## Crystal data

## $\mathrm{C}_{34} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$

$M_{r}=544.51$
Monoclinic, $P 2_{\alpha^{\prime}} / c$
$a=17.599$ (1) A
$b=7.1705$ (5) A
$c=20.679$ (2) $\AA$
$\beta=111.004$ (5) ${ }^{\circ}$
$V=2436.2(3) \AA^{3}$
$Z=4$

## Data collection

Rigaku R-AXIS RAPID Imaging
Plate diffractometer
$\omega$ scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.960, T_{\text {max }}=0.960$
20469 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.045$
$S=1.89$
4219 reflections
379 parameters
$D_{x}=1.485 \mathrm{Mg} \mathrm{m}^{-3}$
Cu $K \alpha$ radiation
Cell parameters from 12013
$\quad$ reflections
$\theta=3.6-65.6^{\circ}$
$\mu=0.82 \mathrm{~mm}^{-1}$
$T=93.2 \mathrm{~K}$
Needle, red
$0.50 \times 0.09 \times 0.05 \mathrm{~mm}$

4219 independent reflections
2120 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.051$
$\theta_{\max }=68.2^{\circ}$
$h=-21 \rightarrow 21$
$k=-7 \rightarrow 7$
$l=-24 \rightarrow 24$

H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right]$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.49 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

| O1-C1 | 1.217 (4) | C8-C9 | 1.392 (5) |
| :---: | :---: | :---: | :---: |
| O2-C11 | 1.202 (4) | C9-C10 | 1.378 (5) |
| O3-C18 | 1.196 (4) | C10-C11 | 1.494 (5) |
| O4-C28 | 1.217 (4) | C10-C12 | 1.414 (4) |
| N1-C1 | 1.422 (4) | C18-C19 | 1.506 (5) |
| N1-C11 | 1.418 (4) | C19-C20 | 1.377 (5) |
| N3-C18 | 1.399 (4) | C19-C29 | 1.405 (4) |
| N3-C28 | 1.434 (4) | C20-C21 | 1.401 (5) |
| C1-C2 | 1.496 (5) | C21-C22 | 1.390 (4) |
| C2-C3 | 1.382 (4) | C22-C23 | 1.435 (5) |
| C2-C12 | 1.417 (4) | C22-C24ii | 1.480 (5) |
| C3-C4 | 1.385 (5) | C23-C24 | 1.427 (4) |
| C4-C5 | 1.401 (5) | C23-C29 | 1.437 (5) |
| C5-C6 | 1.447 (4) | C24-C25 | 1.393 (5) |
| C5-C7 ${ }^{\text {i }}$ | 1.468 (5) | C25-C26 | 1.393 (5) |
| C6-C7 | 1.437 (5) | C26-C27 | 1.395 (4) |
| C6-C12 | 1.427 (5) | C27-C28 | 1.487 (5) |
| C7-C8 | 1.394 (4) | C27-C29 | 1.420 (5) |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11$ | 127.6 (4) | C6-C12-C10 | 119.4 (4) |
| C18-N3-C28 | 125.5 (4) | $\mathrm{O} 3-\mathrm{C} 18-\mathrm{N} 3$ | 120.9 (4) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$ | 121.5 (4) | O3-C18-C19 | 123.5 (4) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | 123.8 (4) | N3-C18-C19 | 115.5 (4) |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ | 114.8 (4) | C18-C19-C20 | 117.8 (4) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 118.3 (4) | C18-C19-C29 | 121.3 (4) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 12$ | 120.5 (4) | C20-C19-C29 | 120.9 (4) |
| C3-C2-C12 | 121.1 (4) | C19-C20-C21 | 120.1 (4) |
| C2-C3-C4 | 120.6 (4) | $\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$ | 121.5 (4) |
| C3-C4-C5 | 121.0 (4) | $\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$ | 119.4 (4) |
| C4-C5-C6 | 119.5 (4) | $\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 24^{\text {ii }}$ | 122.2 (4) |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7^{\text {i }}$ | 121.9 (4) | $\mathrm{C} 23-\mathrm{C} 22-\mathrm{C} 44^{\text {ii }}$ | 118.4 (4) |
| C6-C5-C7 ${ }^{\text {i }}$ | 118.6 (4) | C22-C23-C24 | 122.9 (4) |
| C5-C6-C7 | 122.8 (4) | C22-C23-C29 | 118.3 (4) |
| C5-C6-C12 | 118.5 (4) | C24-C23-C29 | 118.8 (4) |
| C7-C6-C12 | 118.6 (4) | $\mathrm{C} 22^{\text {ii }}-\mathrm{C} 24-\mathrm{C} 23$ | 118.7 (4) |
| C5 ${ }^{\text {i }}$ - $77-\mathrm{C} 6$ | 118.6 (4) | $\mathrm{C} 22^{\text {ii }}-\mathrm{C} 24-\mathrm{C} 25$ | 121.4 (4) |
| $\mathrm{C} 5{ }^{\mathrm{i}}-\mathrm{C} 7-\mathrm{C} 8$ | 121.7 (4) | C23-C24-C25 | 119.9 (4) |
| C6-C7-C8 | 119.8 (4) | C24-C25-C26 | 121.3 (4) |
| C7-C8-C9 | 120.7 (4) | C25-C26-C27 | 120.2 (4) |
| C8-C9-C10 | 120.9 (4) | C26-C27-C28 | 119.5 (4) |
| C9-C10-C11 | 118.4 (4) | C26-C27-C29 | 120.4 (4) |
| C9-C10-C12 | 120.5 (4) | C28-C27-C29 | 120.1 (4) |
| C11-C10-C12 | 121.1 (4) | O4-C28-N3 | 120.4 (4) |
| $\mathrm{O} 2-\mathrm{C} 11-\mathrm{N} 1$ | 120.7 (4) | O4-C28-C27 | 123.3 (4) |
| O2-C11-C10 | 125.0 (4) | N3-C28-C27 | 116.3 (4) |
| N1-C11-C10 | 114.3 (4) | C19-C29-C23 | 119.8 (4) |
| C2-C12-C6 | 119.2 (4) | C19-C29-C27 | 120.8 (4) |
| C2-C12-C10 | 121.3 (4) | C23-C29-C27 | 119.3 (4) |



Figure 2
Projection of the structure on to the $a c$ plane.

All H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.95 \AA$ and $\left.U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})\right]$ and refined using a riding model.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: TEXSAN.

The authors are indebted to Mr I. Suzuki for experimental assistance.

## References

Burnett, M. N. \& Johnson, C. K.(1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
Herbst, W. \& Hunger, K. (1993). Industrial Organic Pigments, pp. 467-475. Weinheim: VCH.
Higashi, T.(1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hino, K., Sato, K., Takahashi, H., Suzuki, S. \& Mizuguchi, J. (2005). Acta Cryst. E61, o440-o441.
Mizuguchi, J. (1981). Cryst. Res. Technol. 16, 695-700.
Mizuguchi, J., Hino, K., Sato, K., Takahashi, H. \& Suzuki, S. (2005). Acta Cryst. E61, o434-o436.
Molecular Structure Corporation (2001). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger and R. Goddard, pp. 175-189. Oxford University Press.
Takahashi, H. \& Mizuguchi, J. (2005). J. Electrochem. Soc. In the press.

